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Robust Fluid Processing Networks
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Abstract—Fluid models provide a tractable and useful approach
in approximating multiclass processing networks. However, they
ignore the inherent stochasticity in arrival and service processes.
To address this shortcoming, we develop a robust fluid approach
to the control of processing networks. We provide insights into
the mathematical structure, modeling power, tractability, and per-
formance of the resulting model. Specifically, we show that the
robust fluid model preserves the computational tractability of the
classical fluid problem and retains its original structure. From
the robust fluid model, we derive a (scheduling) policy that reg-
ulates how fluid from various classes is processed at the servers
of the network. We present simulation results to compare the
performance of our policies to several commonly used traditional
methods. The results demonstrate that our robust fluid policies are
near-optimal (when the optimal can be computed) and outperform
policies obtained directly from the fluid model and heuristic al-
ternatives (when it is computationally intractable to compute the
optimal).

Index Terms—Fluid models, multiclass processing networks,
optimal control, robust optimization, scheduling.

I. INTRODUCTION

IN multiclass processing networks, we are concerned with
serving multiple types of jobs which may differ in their

arrival processes, processing times, routes through the network,
and cost per unit of holding time at the various servers of
the network. Such models are used in a number of applica-
tion domains including manufacturing systems, multiprocessor
computer systems, communication networks, data centers, and
sensor networks. A fundamental control problem in these sys-
tems is that of sequencing. In particular, a sequencing policy
determines at every point in time which type of job to serve at
each server of the network.

Optimal sequencing decisions in a multiclass processing net-
work are in general dynamic and state-dependent, as a decision
depends on load conditions not only at the server where it is
to be made but also at other servers. Naturally, uncertainties
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regarding the arrival and service processes further complicate
the problem. As a result, this problem is both theoretically
and computationally hard to solve optimally, even for problems
with a few number of servers and job types. It can be formulated
as a stochastic dynamic programming problem but that does
not lead to tractable approaches for large instances. Thus, a
number of researchers have attempted to develop tractable
approximations of the optimal policy (see Bertsimas et al. [8],
Chen and Mandelbaum [12], Harrison [20], Harrison and
Wein [22], and Kumar [25]). This led to the study of Brownian
models and fluid relaxations as approximation techniques to
multiclass processing networks.

The Brownian approach was first introduced by
Harrison [20] and further explored by Wein [50], [51], and other
researchers, including Laws and Louth [27], Taylor and
Williams [48], and Williams [53]. It approximates the
processing network in a heavy-traffic regime, that is, when the
workload of the system reaches its capacity limit. In several
instances, a policy can be constructed which is optimal in
this limiting regime. Brownian models typically make use of
the mean and variance of the associated stochastic processes
in deriving a simpler control problem. However, except for
problems that are essentially one-dimensional, this approach is
itself intractable.

On the other hand, fluid models are often tractable, but ignore
the variance of the associated stochastic processes. They are
deterministic, continuous approximations to stochastic, discrete
networks. Research on fluid models is mainly motivated by the
developments in the area of stability of multiclass processing
networks using the fluid model analysis. A major breakthrough
was the theory developed by Dai [15], who showed that the
stability of the processing network is implied by the stability of
its associated fluid model (see also [12], [16], [17], [45], [47]).

There is also a close connection between the control of pro-
cessing networks and the optimal control of the corresponding
fluid models. There are several examples where the solution of
the fluid optimal control problem recovers significant informa-
tion about the structure of an optimal policy in the original
multiclass processing network (see, e.g., [3], [33], [38]). In
particular, Avram et al. [3] find explicit optimal solutions for
the associated fluid models of specific processing networks and
derive threshold policies for the optimal (sequencing) control of
these networks. They also show that the well-known cμ-rule is
optimal for a single-server processing network, as well as, the
corresponding fluid model.

Beyond special cases, several works have developed methods
and guidelines for translating policies derived for the fluid
optimal control problem into an implementable control policy
for the stochastic, discrete network. Related work includes [4],
[5], [13], [14], [31], [32], [34]. Meyn [32] presents several
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numerical experiments to evaluate the performance of discrete
review policies and proposes a policy based upon an affine shift
of the fluid policy which gives significant improvement in his
numerical experiments. A family of discrete review policies
is also proposed by Maglaras [31] based on the BIGSTEP
approach introduced by Harrison [21]. These policies utilize
safety stocks to prevent starvation of resources in the stochastic
system and are shown in [30], [31] to achieve asymptotic opti-
mality and stability under fluid scaling. In workload models that
account for work in the system for each server (see, Meyn [34],
[35] for a thorough description), translation from a fluid policy
to a policy for the stochastic system uses the idea of hedging-
point policies adapted from the inventory control literature;
these are essentially affine translations of the fluid policy that
protect against the risk of potentially high cost. A compre-
hensive treatment of these models and policies can be found
in [35] which also provides specific guidelines on selecting
safety stocks and hedging points based on the parameters of
the stochastic system.

A related approach to synthesizing stable policies for
the stochastic system is to use tracking policies [4], [36].
Paschalidis et al. [36], in particular, propose a class of (se-
quencing and routing) policies that “drive” the state of the
processing network towards a pre-determined target (termed,
“target-pursuing” policies). An advantage of these policies is
that they are amenable to distributed implementation using
local state information. Using fluid model analysis, [36] shows
that these policies are in fact stable.

The study of fluid models in multiclass processing networks
is also motivated from the existence of very efficient optimiza-
tion algorithms used to solve them. Fluid models for processing
networks can be formulated as a specially structured class
of continuous linear programs called Separated Continuous
Linear Programs (SCLPs). These problems can be efficiently
solved using mathematical optimization techniques, in contrast
to the traditional diffusion control approach. During the last
decades, significant progress has been made in solving SCLPs
and their generalizations. In particular, Anderson et al. [2]
characterize the extreme point solutions to SCLPs and show
the existence of optimal solutions with a finite number of
breakpoints in certain cases. Pullan, in a series of papers [39]–
[42], [44], extensively studies SCLPs. He develops a detailed
duality theory, conditions under which an optimal solution ex-
ists with a finite number of breakpoints, as well as, a convergent
algorithm for solving SCLPs. Luo and Bertsimas [29] propose
a convergent numerical algorithm for a larger class of SCLPs
that is able to efficiently solve problems involving hundreds
of variables and constraints. Fleischer and Sethuraman [18]
present polynomial-time approximation algorithms for solving
SCLPs. Weiss [52] characterizes the form of optimal solutions,
establishes a strong duality result and develops a solution
algorithm using simplex pivot operations.

Despite extensive work on the optimal control of processing
networks, this body of research still lacks a unified tractable
and practical approach accommodating all salient features of
the problem. While fluid models are tractable, they ignore the
inherent uncertainties of the problem. This adversely impacts
the performance of the policies derived from the fluid model.

The majority of the approaches we reviewed earlier for trans-
lating fluid policies to the stochastic system were derived with
stability being the key concern and attempt to accommodate
uncertainty by appropriately modifying the optimal fluid pol-
icy. In our work we attempt to incorporate uncertainty in the
fluid optimal control problem. A traditional way to handle
uncertainty in optimization problems is to use stochastic op-
timization, where the uncertain data are modeled as random
variables. However, this approach typically leads to problems
that are often intractable to solve. We refer to Birge and
Louveaux [10] and Shapiro [46] for more information on
stochastic optimization. Another approach introduces stochas-
ticity in the fluid model (resulting in a so-called stochastic fluid
model) but it can only be used in perturbation analysis schemes,
that is, producing gradient estimators of policy parameters that
can be leveraged to optimize specific parametrized classes of
policies (see Cassandras et al. [11]). Yet another approach is
to use robust optimization, which treats the uncertainty in a
deterministic manner and typically leads to tractable problems.
This approach assumes that the uncertain parameters come
from known sets and optimize against the worst-case realization
of the parameters within the uncertainty sets. We refer to
Ben-Tal et al. [6], Bertsimas et al. [7] and the references therein
for a survey on robust optimization. It is this latter approach we
introduce for multiclass processing networks.

Our Contribution: We introduce a tractable approach that
captures both dynamic and uncertain characteristics in multi-
class processing networks. Our approach is to formulate the
fluid control model as an SCLP and use robust optimization to
deal with the uncertainty. We present insights into the modeling
power, tractability, and performance of the proposed model.
More specifically, our contributions are:

(i) Modeling power: We study fluid models in an uncertain
environment from the viewpoint of robust optimization
and introduce a robust fluid problem. We show that
the robust fluid model still remains within the class of
SCLPs. Thus, it preserves the computational tractability
of the classical fluid problem, and all solution techniques
for SCLPs remain applicable.

(ii) Insights: We consider a single-server processing network
and derive valuable insights about properties of an opti-
mal solution for the corresponding robust fluid problem.
In particular, we use complementary slackness optimality
conditions to develop a polynomial-time algorithm for
solving the robust fluid problem. Our results can be
seen as natural extensions to the cμ-rule and the optimal
priority policy for Klimov’s problem [9], in the presence
of parameter uncertainty.

(iii) Performance: We propose methods to translate an opti-
mal solution for the robust fluid control problem to imple-
mentable sequencing policies for the stochastic network.
Because uncertainty is handled at the robust fluid prob-
lem, our methods do not need any distributional assump-
tion on the stochastic network. Moreover, translation of
the resulting policy to the stochastic system is more
direct. We report extensive simulations results to evaluate
the performance of sequencing policies derived from the
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Fig. 1. Criss-cross network.

robust fluid model. We compare the performance of the
proposed policies to several commonly used heuristic
methods. Our results show that for small-size networks,
the proposed policies yield near-optimal policies (when
the optimal can be computed) and for moderate to large-
size networks the performance significantly outperforms
the heuristic methods.

The remainder of the paper is organized as follows. In
Section II, we formulate the fluid control problem of multiclass
processing networks as an SCLP. In Section III, we consider
uncertainty on arrival and service processes and investigate its
robust counterpart. We further propose two methods to translate
an optimal solution for the robust fluid control problem to
implementable sequencing policies. In Section IV, we develop
a polynomial-time algorithm to derive an optimal solution for
the robust fluid control problem of single-server processing
networks. In Section V, we report extensive simulation results
to evaluate the performance of the proposed approach and com-
pare it to other methods in the literature. Section VI contains
some concluding remarks.

Notational Conventions: Throughout this paper, all vectors
are assumed to be column vectors and prime denotes the trans-
pose operation. We use lower case boldface letters to denote
vectors and for economy of space we write x = (x1, . . . , xn)
for the column vector x. We use boldface upper case letters
to denote matrices. We use e to denote the vector of all ones
and 0 for the vector of all zeroes. For a set S, we write |S|
to denote its cardinality. We use x(·) to denote a function
x : [0, T ] → R and x(·) to denote a vector whose components
are real-valued functions defined on the interval [0, T ]. When it
is clear from the context that x(·) is a vector whose components
are functions, we use x instead of x(·). We use the lower case
letter i to denote a job class, and use the lower case letter j to
denote a server. Finally, we use ∀ t to refer to all t ∈ [0, T ], ∀ i
to refer to all job classes, and ∀ j to refer to all servers.

II. PROBLEM DESCRIPTION AND FLUID MODEL

In this section, we present a general framework for the fluid
control of multiclass processing networks. We first describe the
fluid model for a simple network considered by Harrison and
Wein [22] and then describe the general problem formulation.

A. Criss-Cross Network

Consider the processing network in Fig. 1 composed of three
classes and two servers; class 1 and 2 jobs are processed at
server 1 and class 3 jobs are processed at server 2. Class 1 jobs

arrive at server 1 with a rate of λ1 and class 2 jobs arrive at
server 1 with a rate of λ2. After a class 1 job completes service
at server 1, it moves to server 2 and turns into a job of class 3.
Once a class 3 job completes service at server 2, it exits the
system. After a class 2 job completes service at server 1, it exits
the system. For each class i, we let μi be the service rate of
these jobs; that is, the rate at which jobs are processed if the
server processes class i jobs at its full capacity.

Assuming that there are jobs in the system for all three
classes, the problem amounts to deciding whether server 1
should process class 1 or 2 jobs. To formulate this problem
as a fluid model, we let xi(t) denote the total (fractional in
general) number of class i jobs at time t and let ui(t) denote the
effort that the corresponding server—denote it by s(i)—spends
processing class i jobs at time t. This implies that

u1(t)

μ1
+

u2(t)

μ2
≤ 1,

u3(t)

μ3
≤ 1.

Assuming stability, let T be a large enough time so that the
system will empty by time T . To ensure that the system reaches
a state in which all of the classes are empty, it is required to
have sufficient capacity to clear the arrivals. More precisely,
the traffic intensity at both servers must be strictly smaller than
one, i.e.,

λ1

μ1
+

λ2

μ2
< 1,

λ1

μ3
< 1.

Let ci be the cost per unit time for holding a job of class i
in its corresponding buffer. The fluid control problem is to find
a control u such that the total holding cost of the jobs in the
system is minimized over the time interval [0, T ]. This problem
is formulated as follows:

min

T∫
0

c′x(t) dt

s.t. ẋ1(t) = λ1 − u1(t), ∀ t,
ẋ2(t) = λ2 − u2(t), ∀ t,
ẋ3(t) = u1(t)− u3(t), ∀ t,
u1(t)

μ1
+

u2(t)

μ2
≤ 1, ∀ t,

u3(t)

μ3
≤ 1, ∀ t,

u(t),x(t) ≥ 0, ∀ t. (1)

B. A General Formulation

Consider a processing network with m servers and n dif-
ferent job classes. Each class i has an associated server s(i)
that processes jobs of class i. Jobs either leave the system or
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change class as they move through the network. In particular,
if jobs of class i do not leave the system, they have a unique
next class r(i), that is, they join class r(i) when they complete
service at server s(i). The arrivals for each class i come from
other servers or from outside the system. We let λi be the rate
of external arrivals for class i. We set λi = 0 if class i has no
external arrivals.

For each class i, we let the control variable ui(t) specify the
effort that server s(i) spends processing the jobs of class i. The
state variable xi(t) denotes the number of class i jobs at time t
in the system. The dynamics of the system take the form

ẋi(t) = λi − ui(t)−
∑
j �=i

ajiuj(t), (2)

where aji is either 0 or −1 depending on whether or not class i
receives arrivals from class j. Hence, routing in the network
can be represented by an n× n matrix A, such that aii = 1 for
i = 1, 2, . . . , n, and aji = −1 if class i receives arrivals from
class j. The dynamics of the system in matrix form can be
expressed as:

ẋ(t) = λ−Au(t), (3)

where λ is the vector of external arrivals. In the criss-cross
network of Fig. 1, we have

A =

⎡
⎣ 1 0 0

0 1 0
−1 0 1

⎤
⎦ , λ =

⎡
⎣λ1

λ2

0

⎤
⎦ .

By integrating both sides of (3) with respect to t, we get the
following equation:

t∫
0

Au(s) ds+ x(t) = x(0) + λt, (4)

where x(0) is the given vector of the number of jobs at time 0.
Each server may process multiple job classes, each with its

own service rate. Let μi be the service rate of class i jobs. Then,
the service time is given by τi := 1/μi, that is, the required time
to process one unit of class i jobs. Moreover, the fraction of
the effort that server s(i) spends processing jobs of class i at
time t is given by τiui(t). Hence, the sum of τiui(t) for all the
classes processed at the same server must be less than one. This
constraint can be expressed as

Hu(t) ≤ e,

where H is an m× n matrix with components

hji =

{
τi, if s(i) = j,
0, otherwise.

Following the above discussion, the fluid control problem can
be formulated as follows:

min

T∫
0

c′x(t) dt

s.t.

t∫
0

Au(s)ds+ x(t) = x(0) + λt, ∀ t,

Hu(t) ≤ e, ∀ t,
u(t),x(t) ≥ 0, ∀ t. (5)

The state variables x can be eliminated from the formulation
of Problem (5). This can be done by substituting (4) in the
objective function of Problem (5) and using integration by parts.
It follows:

T∫
0

c′x(t)dt =

T∫
0

c′ (x(0) + λ−Au(t)) dt

= Tc′x(0) +

T∫
0

(T − t)c′ (λ−Au(t)) dt.

Notice that the first term is constant and does not depend on
the control variables u(t). Thus, Problem (5) can be rewritten as

min

T∫
0

(T − t)c′ (λ−Au(t)) dt

s.t.

t∫
0

Au(s)ds ≤ x(0) + λt, ∀ t,

Hu(t) ≤ e, ∀ t,
u(t) ≥ 0, ∀ t. (6)

We work within the space L∞([0, T ]) of essentially bounded
measurable functions on [0, T ] in which functions that differ
only on a set of measure zero are identified. In particular,
the components of u are assumed to be bounded measurable
functions on [0, T ]. We say that a control u is feasible if it
satisfies the constraints of Problem (6) and denote the feasible
region of Problem (6) by F , i.e.,

F := {u ∈ Ln
∞[0, T ] | u is feasible for Problem (6)} .

Problem (6) belongs to the well studied class of SCLPs. This
class of problems has been first introduced by Anderson [1]
in order to model job-shop scheduling problems. Since then,
a number of authors (including Pullan [39]–[41], [43], [44],
Philpott and Craddock [37], Luo and Bertsimas [29], Fleischer
and Sethuraman [18], and Weiss [52]) have studied SCLPs from
different points of view. We next present some results on duality
of SCLPs developed by Luo and Bertsimas [29] that we will use
in Section IV.

The dual of Problem (5) is formulated as follows:

max −
T∫

0

(x(0) + λt)′ dπ(t)−
T∫

0

e′η(t) dt

s.t. A′π(t)−H′η(t) ≤ 0, ∀ t,
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π(t) ≤ (T − t)c, ∀ t,
π bounded measurable with finite

variation and π(T ) = 0,

η(t) ≥ 0, ∀ t, (7)

where the first integral in the objective function is the Lebesgue-
Stieltjes integral of the function x(0) + λt, with respect to the
function π(t), from 0 to T .

Suppose that u,x is a feasible solution for Problem (5)
and π, η is a feasible solution for Problem (7). Then, u,x is
optimal for Problem (5) and π, η is optimal for Problem (7)
if the following complementary slackness conditions hold (see
[29, Corollary 1]):

T∫
0

(−A′π(t) +H′η(t))
′
u(t) dt =0,

T∫
0

(Hu(t)− e)′ η(t) dt =0,

T∫
0

x(t)′d ((T − t)c− π(t)) = 0. (8)

III. ROBUST FLUID MODEL

In Problem (6), the components of the matrix H and vector
λ are treated as deterministic quantities. In this section, we
present a robust fluid model that will inject uncertainty in the
fluid model. This approach assumes that the uncertain param-
eters come from known sets, called uncertainty sets. We start
our discussion by modeling uncertainty sets for the fluid control
problem and then investigate its robust counterpart problem.

A. Modeling the Uncertainty

In practice, arrival rates and service times are not only
uncertain, but also change over time. We let τi(t) be the actual
realization of the service time and λi(t) be the actual realization
of the arrival rate at time t for jobs of type i. We assume that
τi(t) can take values in the interval [τ̄i, τ̄i + τ̃i] at each point
in time t. We refer to τ̄i as the nominal service time and to τ̃i
as its deviation. We let zi(t) be the relative deviation from the
nominal service time at time t, that is,

zi(t) :=

{
τi(t)−τ̄i

τ̃i
, if τ̃i > 0,

0, if τ̃i = 0.

We restrict the service times to a set of vector-valued functions
τ (·) = (τ1(·), . . . , τn(·)) so that

τi(t) = τ̄i + zi(t)τ̃i, ∀ i, t, (9a)∑
i:s(i)=j

zi(t) ≤ Γj , ∀ j, t, (9b)

0 ≤ zi(t) ≤ 1, ∀ i, t. (9c)

Here Γj is a given parameter in the interval [0, nj ], where
nj is the number of job classes that are processed at server j,
i.e., nj = |{i | s(i) = j}|. This parameter controls the level
of the uncertainty in service times. The larger Γj is, the more
uncertain are the service times of jobs which are processed at
server j.

For a given τ (·), we consider an associated m× n matrix-
valued function H(·), where

hji(t) =

{
τi(t), if s(i) = j,
0, otherwise.

We define the uncertainty set U to be the set of all matrix-valued
functions H(·), where τ (·) is given by (9).

In a similar way, we model the uncertainty on the arrival
rates. For each class i and each point in time t, we assume that
λi(t) takes values in the interval [λ̄i, λ̄i + λ̃i]. We refer to λ̄i as
the nominal arrival rate and to λ̃i as its deviation. For a given
vector λ(t), we let

ζi(t) :=

{
λi(t)−λ̄i

λ̃i
, if λ̃i > 0;

0, if λ̃i = 0.

We define the uncertainty set D to be the set of all vector-
valued functions λ so that

λi(t) = λ̄i + ζi(t)λ̃i, ∀ i, t, (10a)∑
i:s(i)=j

ζi(t) ≤ Δj , ∀ j, t, (10b)

0 ≤ ζi(t) ≤ 1, ∀ i, t. (10c)

If a class i has no external arrivals, we set λ̄i = λ̃i = 0. In
this case, ζi(t) = 0 for all t ∈ [0, T ], and thus, class i does not
have any contribution in the summation on the left-hand side of
Inequality (10b).

B. Robust Counterpart Problem

Having defined the uncertainty sets as above, a control u
is called robust if it satisfies the constraints of Problem (6)
with respect to all possible realizations of uncertain data. Let
S denote the set of all robust controls. This means that u ∈ S if
and only if

t∫
0

Au(s) ds ≤x(0) + λ(t)t, ∀λ ∈ D,

H(t)u(t) ≤ e, ∀H ∈ U ,
u(t) ≥0,

for all t ∈ [0, T ]. We refer to a robust control with the best
worst-case cost guarantee as an optimal robust control. The
robust counterpart problem is to find such a control. This
problem is formulated as follows:

min
u∈S

max
λ∈D

T∫
0

(T − t)c′ (λ(t)−Au(t)) dt. (11)
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Theorem 1: An optimal robust control can be obtained by
solving the following problem:

min

T∫
0

c′x(t) dt

s.t.

t∫
0

Au(s) ds+ x(t) = x(0) + λ̄t, ∀ t,

Γjβj(t) +
∑

i:s(i)=j

(τ̄iui(t) + αi(t)) ≤ 1, ∀ j, t,

αi(t) + βj(t)− ui(t)τ̃i ≥ 0, ∀ j, i with s(i) = j, ∀ t,
u(t),x(t),α(t),β(t) ≥ 0, ∀ t. (12)

Proof: We first show that a control u is robust if and only
if there are α(·),β(·) ≥ 0 so that

t∫
0

Au(s)ds ≤ x(0) + λ̄t, (13a)

Γjβj(t) +
∑

i:s(i)=j

(τ̄iui(t) + αi(t)) ≤ 1, ∀ j, (13b)

αi(t) + βj(t)− ui(t)τ̃i ≥ 0, ∀ j, i with s(i) = j,

(13c)

for all t ∈ [0, T ].
Given a control u, we have

t∫
0

Au(s) ds ≤ x(0) + λ(t)t, ∀ t,λ ∈ D,

if and only if

t∫
0

aiu(s) ds ≤ xi(0) + min
λ∈D

λi(t)t = xi(0) + λ̄it, ∀ i, t,

where ai is the ith row of the matrix A.
In addition,

H(t)u(t) ≤ e, ∀ t,H ∈ U ,

if and only if

Zj(u, t) ≤ 1, ∀ j, t,

where

Zj(u, t) := max
∑

i:s(i)=j

(τ̄i + zi(t)τ̃i)ui(t)

s.t.
∑

i:s(i)=j

zi(t) ≤ Γj ,

0 ≤ zi(t) ≤ 1, ∀ i : s(i) = j.

Using strong duality for linear optimization problems, we
can write:

Zj(u, t) = min Γjβj(t) +
∑

i:s(i)=j

(τ̄iui(t) + αi(t))

s.t. αi(t) + βj(t)− ui(t)τ̃i ≥ 0, ∀ i : s(i) = j,

αi(t) ≥ 0, ∀ i : s(i) = j,

βj(t) ≥ 0.

This justifies constraints (13).
We now turn our attention to the objective function of

Problem (11). For a given robust control u ∈ S , we let

Z(u) := max
λ∈D

T∫
0

(T − t)c′ (λ(t)−Au(t)) dt. (14)

It follows from the definition of D that

Z(u) =

T∫
0

(T − t)c′
(
λ̄(t)−Au(t)

)
dt

+max

T∫
0

n∑
i=1

(T − t)ciλ̃iζi(t) dt

s.t.
n∑

i=1

ζi(t) ≤ Δj , ∀ j,

0 ≤ zi(t) ≤ 1, ∀ i, t. (15)

By taking the dual of the maximization problem, we obtain

Z(u) =

T∫
0

(T − t)c′
(
λ̄(t)−Au(t)

)
dt

+min

T∫
0

m∑
j=1

Δjyj(t) dt+

T∫
0

n∑
i=1

wi(t) dt

s.t. y(t) + wi(t) ≥ ci(T − t)λ̃i, ∀ i, t,
y(t),w ≥ 0, ∀ t.

Here, the minimization problem is independent of u. As a re-
sult, finding an optimal robust control reduces to the following
problem:

min

T∫
0

(T − t)c′
(
λ̄(t)−Au(t)

)
dt

s.t.

t∫
0

Au(s) ds ≤ x(0) + λ̄t, ∀ t,

Γjβj(t) +
∑

i:s(i)=j

(τ̄iui(t) + αi(t)) ≤ 1, ∀ t, j,

αi(t) + βj(t)− ui(t)τ̃i ≥ 0, ∀ t, i, j : s(i) = j,

u(t), α(t), β(t) ≥ 0, ∀ t. (16)
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This problem is equivalent to Problem (11) by setting

x(t) = x(0) + λ̄t−
t∫

0

Au(s) ds, ∀ t.

�
It follows from Theorem 1 that the uncertainty on arrival

rates does not play any role in determining an optimal robust
control and the robust counterpart problem only relies on the
nominal values of the arrival rates. Hence, in the rest of the
paper, the arrival rates are assumed to be deterministic and are
denoted by λ.

C. Robust Policies

Having being able to solve the robust fluid problem, the next
step is to translate optimal robust controls to a dynamic schedul-
ing policy for the control of stochastic multiclass processing
networks. Here, we present a simple approach, which is known
as model predictive control in control theory and engineering
practice (see, e.g., [19], [26], [28], [49]). The derived policy
is similar to the discrete review policies (see, e.g., [21], [31],
[32]), where the system state is reviewed at discrete points in
time and at each such point control decisions are made using the
optimal control policy of the associated fluid control problem.
In our case, however, the impact of uncertainty has been dealt
with at the fluid control level.

In model predictive control, control decisions are made at
control epochs, i.e., at discrete points in time when the state of
the system is changed due to job arrivals and departures. The
main idea is to solve the robust fluid problem at every control
epoch and use the first step of the optimal (fluid) control as
the current sequencing decision. At the next epoch, we solve
the robust fluid control problem again, and so on. Formally,
to find a policy at the control epoch t, we set xi(0) to be the
number of class i jobs at that epoch. We then solve Problem (11)
and let u∗,x∗ be an optimal robust solution. It is known that
Problem (11) has a piecewise constant optimal control and the
algorithm developed by Luo and Bertsimas [29] finds such a so-
lution. More precisely, there is a partition {t0 = 0, t1, . . . , tq =
T} of the time interval [0, T ] so that u∗ is constant over
[tk−1, tk) for all k = 1, . . . , q. This means that the control
u∗(tk−1) is optimal if the state (that is, number of jobs in the
system) is x(tk−1). In particular, u∗(0) is an optimal control at
the epoch t. For each class i, we let

p∗i :=
u∗
i (0)∑

k:s(k)=s(i) u
∗
k(0)

.

This implies that
∑

i:s(i)=j p
∗
i = 1 for each server j. We then

use the following sequencing policy for the jobs at server j:

Robust fluid policy (RFP): give priority to a job class i
with highest value p∗i . If there exists more than one such
job classes, break ties arbitrarily.

We note that for specific problems, we may use particular
rules to break ties. With the above policy, each server will
be processing at most one job at a time. The computational
tractability of this model predictive control scheme depends on
(a) how efficiently one can solve Problem (11) and (b) how

many times one has to solve Problem (11). Regarding issue
(a) we notice that Problem (11) is an instance of SCLP with
2n+m control variables, n state variables, and n+m+ nm
constraints. In general, solving an SCLP is NP-hard since it
includes as special case the minimum cost dynamic flow prob-
lem, which is weakly NP-hard (see [24]). However, the problem
is computationally tractable in the sense that one can solve
large instances. In our simulation experiments in Section V
we use the algorithm of Luo and Bertsimas [29] which can
handle hundreds of variables and constraints. Regarding issue
(b) above, we note that in general one may need to solve a large
number of SCLPs—one at each control epoch. In Section V-A
we introduce a heuristic that helps to reduce this number
significantly. Our numerical examples in Section V will show
that our approach is tractable as one can handle processing
networks with tens of job classes and tens of servers.

IV. A SINGLE-SERVER SYSTEM

In this section, we show that one can find an optimal control
for the robust fluid problem in polynomial time under certain
conditions. We consider a single server processing network
with n jobs. We let λi be the arrival rate, μi be the processing
time, and ci be the holding cost per unit of time for class i.
The problem is to schedule the jobs so as the total holding cost
is minimized. It is well known that an optimal policy for this
problem is to give priority to a class i with highest ciμi—the
well known cμ-rule. We show that the robust fluid control
problem also yields a priority policy that can be computed in
polynomial-time.

The control problem for processing the jobs on a single
server is formulated as follows:

min

T∫
0

c′x(t) dt

s.t.

t∫
0

ui(s) ds+ xi(t) = xi(0) + λit, ∀ t, i,

n∑
i=1

τiui(t) ≤ 1, ∀ t,

u(t),x(t) ≥ 0, ∀ t, (17)

where τi := 1/μi is the service time for class i jobs. We assume
that service times are subject to uncertainty and fluctuate over
time while the arrival rates are deterministic. For each class i
and each point in time t, we let the actual realization of the
service time lie in the interval [τ̄i, τ̄i + τ̃i], where τ̄i is the
nominal service time and τ̃i is the deviation from its nominal
value. We assume that the total relative deviation from the
nominal service times is bounded by Γ. Then, by Theorem 1,
the robust counterpart of Problem (17) is:

min

T∫
0

c′x(t) dt

s.t.

t∫
0

ui(s) ds+ xi(t) = xi(0) + λt, ∀ i, t,
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n∑
i=1

(ui(t)τ̄i + αi(t)) + Γβ(t) ≤ 1, ∀ t,

ui(t)τ̃i(t)− αi(t)− β(t) ≤ 0, ∀ t,
u(t),x(t),α(t), β(t),≥ 0, ∀ t. (18)

We next describe how to construct an optimal solution
u∗,α∗, β∗ for this problem by solving at most n linear opti-
mization problems. The basic idea is that at each point in time
t, the structure of u∗,α∗, β∗ depends on the number of jobs in
the system at time t. More specifically, we let u∗(t) := v∗(t),
α∗(t) := ρ∗(t), β∗(t) := ξ∗(t), where v∗(t),ρ∗(t), ξ∗(t) is an
optimal solution for the following linear optimization problem:

max

n∑
i=1

(T − t)civi(t)

s.t.
n∑

i=1

(τ̄ivi(t) + ρi(t)) + Γξ(t) ≤ 1,

vi(t)τ̃i − ξ(t)− ρi(t) ≤ 0, ∀ i,
vi(t) ≤ λi, ∀ i : xi(t) = 0,

v(t),ρ(t), ξ(t) ≥ 0. (19)

We refer to this problem as LO(t).
Initially, we have t = t0 := 0, at which point x(0) is given.

We solve LO(t0) and obtain an optimal control v∗(t0). We
serve the jobs with this policy until a class, say class 1, is
depleted, that is x1(t1) = 0 where t1 is the depletion time of
class 1. More precisely, we set u∗(t) := v∗(t0) for all 0 ≤ t <
t1. At time t = t1, a switch occurs and the policy is revised.
To do that, we solve LO(t1) to find an optimal policy v∗(t1) at
time t1. We use this policy to serve jobs until another job class,
say class 2, is depleted. Let t2 be the depletion time of class 2.
We then set u∗(t) := v∗(t1) for all t1 ≤ t < t2. We continue
this procedure until all classes are depleted, at which point and
thereafter, an optimal policy is to serve each job class i with
rate λi and no jobs will be held in the network.

The above procedure requires solving at most n linear op-
timization problems and yields a piecewise-constant solution
u∗,α∗, β∗ for Problem (18) with breakpoints t0, t1, . . . , tn
so that

u∗(t) :=

{
v∗(tk−1), if tk−1 ≤ t < tk,
v∗(tn−1), if tn ≤ t ≤ T ,

α∗(t) :=

{
ρ∗(tk−1), if tk−1 ≤ t < tk,
ρ∗(tn−1), if tn ≤ t ≤ T,

β∗(t) :=

{
ξ∗(tk−1), if tk−1 ≤ t < tk,
ξ∗(tn−1), if tn ≤ t ≤ T ,

(20)

where v∗(tk−1), ρ∗(tk−1), ξ∗(tk−1) is an optimal solution for
LO(tk−1).

Theorem 2: The solution u∗,α∗, β∗, given by (20), is opti-
mal for Problem (18).

Proof: It follows from the construction of u∗,α∗, β∗ that
it is feasible for Problem (18). To prove it is optimal, we
construct a dual feasible solution for the dual of Problem (18)

which satisfies optimality conditions with u∗,α∗, β∗. Based on
Bertsimas and Luo’s [29] dual formulation (7) for SCLPs, the
dual of Problem (17) is formulated as follows:

max −
T∫

0

(x(0) + λt)′ dπ(t)−
T∫

0

η(t) dt

s.t. πi(t)− τ̄iη(t)− τ̃iγi(t) ≤ 0, ∀ i, t,
n∑

i=1

γi(t)− Γη(t) ≤ 0,

γi(t)− η(t) ≤ 0, ∀ i, t,
πi(t) ≤ (T − t)ci, ∀ i,
π bounded measurable with finite

variation and π(T ) = 0,

η(t) ≥ 0, ∀ t. (21)

Suppose that u,α, β is a feasible solution for Problem (18)
and π, η, γ is a feasible solution for Problem (21). It follows
from the complementary slackness optimality conditions (8)
that u,α, β is optimal for Problem (18) and π, η, γ is optimal
for Problem (21) if the following conditions are met:

T∫
0

n∑
i=1

(πi(t)− μ̄iη(t)− τ̃iγi(t))ui(t) dt =0,

T∫
0

(
1− Γβ(t)−

n∑
i=1

(τ̄iui(t) + αi(t))

)
η(t) dt =0,

T∫
0

(
Γη(t)−

n∑
i=1

γi(t)

)
β(t) dt =0,

T∫
0

n∑
i=1

(η(t)− γi(t))αi(t) dt =0,

T∫
0

n∑
i=1

xi(t)d (πi(t)− (T − t)ci) = 0.

(22)

We next construct a feasible solution for Problem (21),
which satisfies the above optimality conditions. To that end, we
take the dual of Problem (19) and obtain the following linear
optimization problem:

min θ(t) + λ′δ(t)

s.t. δi(t) + τ̄iθ(t) + τ̃iqi(t) ≥ (T − t)ci, ∀ i,

Γθ(t)−
n∑

i=1

qi ≥ 0,

θ(t)− qi(t) ≥ 0, ∀ i,
δ(t),q(t), θ ≥ 0,

δi(t) = 0, ∀ i : xi(t) > 0.
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Let q∗(t), δ∗(t), θ∗(t) be an optimal solution for this problem.
We define

π∗(t) :=

{
(T − t)c− δ∗(tk−1), if tk−1 ≤ t < tk,
(T − t)c− δ∗(tk−1), if tn−1 ≤ t ≤ T ,

γ∗(t) :=

{
q∗(tk−1), if tk−1 ≤ t < tk,
q∗(tn−1), if tn ≤ t ≤ T ,

η∗(t) :=

{
θ∗(tk−1), if tk−1 ≤ t < tk,
θ∗(tn−1), if tn ≤ t ≤ T .

It is easy to verify that π∗,γ∗, η∗ is a feasible solution
for Problem (21). Moreover, by the complementary slackness
conditions for linear optimization, we can show that u∗, ρ∗,
ξ∗ and π∗,γ∗, η∗ satisfies the optimality conditions (22). This
completes the proof. �

We notice that Problem (19) can be viewed as the robust
counterpart of a maximization problem, where a class i with
highest ci/τ̄i must be selected. More specifically, when all
service times are deterministic, that is, τ̃i = 0 for all classes
i, Problem (19) is simplified as

max

n∑
i=1

(T − t)civi(t)

s.t.
n∑

i=1

τ̄ivi(t) ≤ 1,

vi(t) ≤ λi, ∀ i : xi(t) = 0,

v(t) ≥ 0. (23)

This problem gives priority to a class i with highest ci/τ̄i. Thus,
our approach provides an alternative proof for the optimality
of the cμ-rule when all service times are deterministic. Fur-
ther, the robust fluid model retains its original structure and
Problem (19) can be seen as the robust version of Problem (23),
thereby providing a robust generalization of the cμ-rule.

A. Klimov’s Problem

Next, we show that all the above results can carry over to
Klimov’s problem—a single server queue with probabilistic
feedback (see Klimov [23], Bertsimas et al. [9], and references
therein). Specifically, a pij fraction of class i jobs are fed back
as jobs of class j and a pi0 fraction of class i jobs leave the
system. As before, the problem is to schedule the jobs so as
the total holding cost is minimized. The corresponding control
problem is formulated as follows:

min

T∫
0

c′x(t) dt

s.t.

t∫
0

Auds+ xi(t) = x(0) + λt, ∀ t,

n∑
i=1

τiui(t) ≤ 1, ∀ t,

u(t),x(t) ≥ 0, ∀ t, (24)

where A is an n× n matrix with aii = 1 for i = 1, 2, . . . , n,
and aij = −pij for i �= j. One can use Gauss—Jordan elimina-
tion to verify that the matrix A is invertible. Then, Problem (24)
can be rewritten as

ZCQ = min

T∫
0

c′x(t) dt

s.t.

t∫
0

wi(s) ds+ xi(t) = λit, ∀ i, t,

τ ′A−1w(t) ≤ 1, ∀ t,
A−1w(t) ≥ 0, ∀ t,
x(t) ≥ 0, ∀ t. (25)

This problem is the same as Problem (17), but with different
matrix coefficients. Therefore, all previous techniques can be
extended to Problem (25) and one can show that its robust
counterpart is solvable in polynomial-time.

V. SIMULATION RESULTS

In this section, we provide simulation results to compare the
performance of the robust fluid policy to several alternative
policies in the literature. There are several motivating reasons
for this simulation study. First, we wish to test how close is the
performance of the proposed policy to the performance of the
optimal policy in small-size networks, where the optimal can be
computed. The second purpose is to test whether the robust fluid
policy outperforms several heuristic policies on moderate to
large-size networks. The third purpose is to examine the effect
of the uncertainty set on the performance of the robust policy.
More precisely, we assume that the total relative deviation of
the service times from their nominal values is bounded by Γ
for each server and investigate the sensitivity of the robust
policy to the parameter Γ. In addition, we seek to test the
performance the robust policy against heuristic alternatives
under various distributions of arrival and service processes. To
that end, we simulate external arrivals and service times under a
hyper-exponential distribution and investigate the performance
of the robust fluid policy when the Coefficient of Variation
(CoV) increases. Finally, we are interested in the computational
efficiency of our approach, which relates to how frequently we
have to solve Problem (11) in order to obtain a sequencing
policy for each possible network state. We comment on the
latter issue in the next subsection.

A. Computational Remarks

The robust fluid policy described in Section III-C requires
solving Problem (11) for each state to compute an optimal
control. It is computationally intractable to enumerate and
evaluate the optimal control for all states on moderate to
large-size networks since the number of possible states grows
exponentially in the number of job classes. Instead, we propose
a heuristic method to approximate optimal controls and speed
up the computational time.
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We first notice that some states may never appear during a
simulation of the system. Therefore, we solve the robust fluid
model only when the system reaches a new state. Let n be
the vector representing the number of jobs in each class of
the system at the current epoch. We set x(0) = n and solve
Problem (11). Let u∗,x∗ be an optimal solution, where u∗

is piecewise constant with breakpoints t0 = 0, t1, . . . , tq = T .
This solution does provide an optimal policy when the state is
x∗(t1), . . . ,x

∗(tq−1). In particular, the optimal control u∗(0)
on the first step yields a policy to sequence the jobs at the
current epoch (when the state is n), and for k = 1, . . . , q − 1
the control u∗(tk) is optimal if the system reaches the state
x(tk). We can therefore, maintain this information and use it
whenever these particular states are reached, which helps to
avoid re-solving Problem (11) if we already know the optimal
control for a state.

In general, x∗(t1), . . . ,x
∗(tq−1) are fractional, while the

number of jobs in the system is integer. Suppose that the system
reaches a state n at some later epoch and there is some k so that
|ni − x∗

i (tk−1)| ≤ ω and ni > 0 if and only if x∗
i (tk−1) > 0

for all i, where ω ≥ 0 is a given parameter to control the
accuracy of the heuristic. Then, we apply the control u∗(tk−1)
to sequence the jobs at the servers. We show in our simulation
experiments that the performance of the robust policy is rather
insensitive with respect to the parameter ω, while it reduces
significantly the number of calls to a solver for Problem (11).

B. Network Examples

We consider four different processing networks under var-
ious parameter scenarios. The problem is to determine a dy-
namic sequencing policy at each server so that the long-run
average expected number of jobs in the system is minimized.
The external arrivals are Poisson with class-dependent rates,
and the service times are exponentially distributed with class-
dependent rates. Let λ be the vector of mean arrival rates and τ
be the vector of mean services times. When solving the robust
fluid problem to derive a robust policy for each state, we set the
nominal values of external arrival rates to λ and the nominal
values of service times to τ with an allowed deviation of 0.25τ
so that the total relative deviation from the nominal service
times at each server is bounded by Γ. More precisely, we set
c := e, λ̄ := λ, τ̄ := τ , τ̃ := 0.25τ in Problem (11).

In our simulation experiments, we report the performance of
the best robust fluid policy, denoted by RFP, which corresponds
to the best value of Γ > 0 found by doing several simulation
runs. Notice that when Γ = 0, the robust fluid model reduces to
the classical one. In this case, we denote the fluid policy with
FP. In order to evaluate the efficiency of our proposed approach,
we calculate the percentage distance of the robust fluid policy
with the best other policies in the literature and the percentage
distance of the robust fluid policy with the classical fluid policy.
In particular, we report

E1 :=
Best other-RFP

Best other
×100%, E2 :=

FP-RFP
FP

×100%.

We first consider the criss-cross network of Fig. 1, with
three classes and two servers. In order to examine the effect

TABLE I
NUMERICAL RESULTS FOR THE CRISS-CROSS NETWORK OF FIG. 1

TABLE II
PARAMETERS FOR THE TRAFFIC CONDITIONS OF TABLE I

of traffic conditions on the performance of the robust policy,
we consider various traffic conditions as in [36] and list them
in Table II, where the following abbreviations are used for
the traffic conditions: I.L. (imbalanced light), B.L. (balanced
light), I.M. (imbalanced medium), B.M. (balanced medium),
I.H. (imbalanced heavy), and B.H. (balanced heavy). In this
table, ρ1 and ρ2 are the total traffic intensities at servers 1 and
2, respectively, i.e., ρ1 := λ1/μ1 + λ2/μ2 and ρ2 := λ1/μ3.

In Table I, we report the performance of the different meth-
ods for the data shown in Table II. In the second column, we
list the optimal performance obtained via dynamic program-
ming, denoted by DP. We notice that DP is computationally
intractable for the heavy traffic case (B.H.). In the third column,
we report the performance of an optimized target-pursuing
policy proposed in [36], denoted by OTP. In the fourth column,
we list the performance of a threshold policy proposed in [22],
denoted by Thr. This policy gives priority to jobs of class 1
at server 1 if the number of jobs at server 2 is below some
threshold; otherwise gives priority to jobs of class 2. The results
listed in the fourth column are for the best such policy (i.e.,
optimized over the threshold). In the fifth and sixth columns,
we list the performance of FP and RFP, respectively. Finally, in
the last two columns, we report E1 and E2.

Here are our observations from Table I. The robust policy
performs better as the traffic intensity increases. More precisely,
RFP performs a little bit better than FP from light to moderate
traffic scenarios, and significantly better under the heavy traffic
cases (in particular B.H.). In this case, we are within 2.1% of
the threshold policy, which is conjectured to be asymptotically
optimal in heavy traffic [22], and we outperform by more than
12.7% the fluid policy. Notice that the threshold value in the
threshold policy can be interpreted as a safety stock protecting
server 2 from starvation. Since RFP performs close to the
threshold policy in heavy traffic, it is implied that the uncer-
tainty incorporated in the fluid model leads to maintaining some
appropriate safety stock for server 2; FP, on the other hand, is
greedy and does not do that, leading to worse performance.

In order to test the impact of the distribution of arrival
rates and service times, we simulate the external arrivals
and the service times under the hyper-exponential distribution
with different coefficients of variation. Table III compares the
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TABLE III
NUMERICAL RESULTS FOR THE CRISS-CROSS NETWORK OF FIG. 1

UNDER THE TRAFFIC CASE B.H. AND DIFFERENT

COEFFICIENTS OF VARIATION

Fig. 2. Effect of Γ. Results for the criss-cross network of Fig. 1 under the
traffic case B.H. for different coefficients of variation and values of Γ.

performance of the robust policy to the fluid policy and the
threshold policy under the heavy traffic case B.H. when the
Coefficient of Variation (CoV) is 1.0, 1.1, 1.2, 1.3, and 1.4.
We observe that the robust fluid policy performs as well as the
best threshold policy and both significantly outperform the fluid
policy. On average, we are within 2.33% of the threshold policy
and outperform by more than 3.14% the fluid policy.

To examine the effect of Γ, in Fig. 2 we report the perfor-
mance of the robust policy for different values of Γ and differ-
ent coefficients of variation under the heavy traffic case B.H.
When CoV is close to 1.0, the performance of the robust
policy is rather insensitive with respect to the parameter Γ and
this makes intuitive sense. However, for larger values of CoV,
injecting more uncertainty into the fluid control problem can
lead to non-negligible performance improvements (about 20%
in some instances) compared to the performance under Γ = 0.

In order to find out how many times we have to solve
Problem (11) and how the parameter ω helps to reduce these
times, we report in Fig. 3 the performance of the RFP and
the number of times that Problem (11) is solved for different
values of Γ and ω under the heavy traffic case B.H. Here,
the number of arrivals is set to 1,000,000. We observe that
the number of times that Problem (11) is solved dramatically
decreases as ω increases, taking values ω = 0, 1, . . . , 20, while
the performance of the RFP is not too sensitive with respect
to ω. Moreover, as Fig. 3(b) highlights, the number of SCLPs
we need to solve is not very sensitive to the parameter Γ
which regulates the amount of uncertainty injected into the fluid
model.

The second example we consider is a network with six
classes and two servers as shown in Fig. 4. Jobs of class 1
arrive according a Poisson process with a rate λ1 and they visit
servers 1, 2, 1, 2, in that order, forming classes 1, 2, 3, and

Fig. 3. Effect of ω. Results for the criss-cross network of Fig. 1 under the
traffic case B.H. and different values of Γ and Ω. (a) Effect of ω on the
performance of RFP. (b) Effect of ω on reducing the number of times we solve
Problem (11). Note that the y-axis is in a logarithmic scale.

Fig. 4. A six-class network.

4, respectively, and then exit the system. Jobs of class 2 arrive
according to a Poisson process with a rate λ2 and then visit
servers 1 and 2, forming classes 5, and 6, respectively, and then
exit the system. Servers 1 and 2 have exponentially distributed
service times with rates μ1 and μ2, respectively.

In Table IV, we compare the performance of our robust
policy with other methods for different traffic conditions as
listed in Table V, where the same notation and abbreviations
are used as in Table I. These parameters are taken from [36].
Both RFP and FP perform equally well from light to mod-
erate traffic scenarios, but in heavy traffic, RFP significantly
outperforms FP.

In the next two examples, we are interested to see how well
the robust policy performs as the size of the network increases.
We consider an extension of the six-class network in Fig. 4 to
a network with m servers as shown in Fig. 5. There are 3 ·m
classes of jobs in total and only classes 1 and 3 have external
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TABLE IV
NUMERICAL RESULTS FOR THE SIX-CLASS NETWORK OF FIG. 4

TABLE V
PARAMETERS FOR THE TRAFFIC CONDITIONS OF TABLE IV

Fig. 5. An extension of the six-class network.

TABLE VI
NUMERICAL RESULTS FOR THE REENTRANT FEED-FORWARD

NETWORK OF FIG. 5

arrivals according to a Poisson process with a rate λ1 and λ2,
respectively. We used the data in Table IV for the B.H. case.
In particular, we used λ1 = λ2 = 9/140 and the service times
for the odd servers S1, S3, . . . , S2�m/2�+1 are the same as the
service times for server 1, while the service times for the even
servers S2, S4, . . . , S2�m/2� are the same as the service times
for server 2 in the six-class network. Thus, the total traffic
intensity of each server is 0.9.

Table VI compares the performance of the proposed policy
with other heuristic methods for m = 2, . . . , 10. In this table,
LBFS refers to the last-buffer first-serve policy, where a priority
at a server is given to the class with highest index. FCFS refers
to the first-come first-serve policy, where a priority at a server
is given to jobs in order of arrival, and the cμ-rule gives priority
to the class i with highest ciμi.

We finally consider a reentrant network with m servers as
shown in Fig. 6. Each server processes 3 classes of jobs, and
thus, there are 3 ·m classes in total. Only class 1 has external
arrivals according to a Poisson process with a rate λ1. Service
times are exponentially distributed with rate μi for class i jobs.

Table VII compares the performance of the robust policy with
FP, LBFS, FCFS, and cμ policies for m = 2, . . . , 7. Here, the

Fig. 6. A reentrant network.

TABLE VII
NUMERICAL RESULTS FOR THE REENTRANT NETWORK OF FIG. 6

WITH 3 CLASSES PER EACH SERVER

total traffic intensity of each odd server is 0.896 and the total
traffic intensity of each even server is 0.8625.

We next summarize the major conclusions from our simula-
tion study.

1) In the criss-cross network of Fig. 1, the performance
of our robust fluid policy is comparable to the perfor-
mance of the threshold policy proposed by Harrison and
Wein [22]. Moreover, the relative difference between the
performance of the robust policy and the fluid policy
increases as the coefficient of variation increases.

2) In both the criss-cross network of Fig. 1 and the six-class
network of Fig. 4, the robust fluid policy outperforms the
fluid policy and the efficacy of the robust policy increases
with the traffic intensity.

3) In the reentrant feed-forward network of Fig. 5, the
performance of the robust fluid policy is close to the
performance of the best other heuristic policies and is
better than the performance of the fluid policy as the
number of servers increases.

4) In the reentrant network of Fig. 6, the performance of our
robust fluid policy outperforms the performance of the
heuristic ones as well as the fluid policy, and the efficacy
of the robust fluid policy seems to be stable as the number
of servers increases.

5) The performance of the robust policy is not very sensitive
with respect to the parameter Γ for systems with low
coefficient of variation (close to 1). When though the
coefficient of variation is larger, accommodating uncer-
tainty in the fluid control problem can lead to perfor-
mance improvements.

6) Finally, the number of times that Problem (11) is required
to be solved dramatically decreases as the parameter ω
increases, while the performance of the robust fluid policy
is not too sensitive with respect to ω.

VI. CONCLUSION

We presented a tractable approach to address uncertainty in
multiclass processing networks. Unlike other approaches that
make probabilistic assumptions, the proposed approach treats
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the uncertainty in a deterministic manner using the framework
of robust optimization. It relies on modeling the fluid control
problem as an SCLP and characterizing its robust counterpart.
We showed that the robust problem formulation still remains
within the class of SCLPs, and thus, preserves the computa-
tional complexity of the fluid control problem.

We also presented a way of translating the optimal controls
from the robust fluid model to the stochastic network using
ideas from model predictive control. Admittedly, we have not
established stability of the class of robust fluid policies we
introduced. This remains an open research question.

As our numerical results indicate, our approach leads to
effective scheduling policies that perform closely against the
optimal policy in small enough instances where the optimal can
be computed. In other instances, where near-optimal policies
can be derived in certain limiting regimes (e.g., policies based
on heavy-traffic analysis), our policy performs comparable to
such policies even in the traffic conditions that favor the alter-
native. More interestingly, in large enough problem instances
where neither the optimal nor near-optimal alternatives exist,
our policy clearly outperforms generic alternatives. The pro-
posed approach scales well and can handle networks with tens
of job classes and tens of servers.
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